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A binary collision model by the Monte Carlo method is proposed for plasma simulations 
with particle codes. The model describes a collision integral of the Landau form. Collisional 
effects in spatially uniform plasmas are simulated, and the results are in good agreement 
with theoretical ones. 

1. INTRODUCTION 

Computer simulations of plasmas. with particle codes play important roles in the 
research of transport phenomena, heating processes, and so on. In these simulations, 
the number of particles is far smaller than that in the simulated situations, because 
of the limitation of speed and capacity of the computer. The result is that fluctuation 
phenomena such as collisions are greatly enhanced. In order to reduce the collisional 
effects, the finite-size particle model has been introduced [l]. The properties of a 
plasma of finite-size particles have been studied by many authors [2-4]. The phenomena 
occurring for wavelengths longer than the size of a cloud are unchanged by the use 
of the finite-size particle model, while the short-wavelength modes are not accurately 
simulated. In usual simulations, the cloud size is chosen to be on the order of the 
Debye radius, and the properties of binary collisions are changed. Especially in one 
and two-dimensional simulations, the effects of collisions are much different from 
those in real plasmas. 

Accordingly, it is appropriate to introduce a method for adding the effects of%nary 
collisions into the finite-size particle model, when collisional effects in a plasma are 
studied. Shanny et 41. [S] introduced Lorentz gas collision model into a one-dimensional 
electron plasma simulation. By the use of this model, Tsang et al. [6] studied the 
neoclassical diffusion in a toroidal magnetic field. Lorentz gas collision model, 
however, simulates only the electron-ion collisions. Gula and Chu [7] used the Krook 
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model in the simulation of the two-stream instability. Takizuka et al. [8] performed 
the simulation of the plasma confinement in a toroidal quadrupole, in which a 
collision model was introduced by utilizing a modification of Langevin’s equation. 
The procedure for adding the effects of binary collisions developed by Oliphant and 
Nielson [9] is that the scattering angle is given on the basis of the local collision 
frequency. ln these models, however, the collision frequencies do not have any 
velocity dependence. On the other hand, Monte Carlo methods in which a collision 
between two particles is directly simulated have been used to study shock waves in 
neutral gases [lo, 111, and the results are in excellent agreement with available 
experimental data. 

In this paper, we propose a binary collision model by a Monte Carlo method for 
plasma simulations with particle codes. In Section II, the model is described. In 
Section III, computer simulations of spatially uniform plasmas are performed to 
check the model. 

II. MODEL 

In order to simulate the effects of binary collisions in a plasma, we introduce a 
binary collision model by a Monte Carlo method for a particle simulation. At first, 
we explain the major steps in the model. Next the detailed descriptions of some 
steps are presented. 

Major Steps 

The major steps in the model are as follows. 

(1) The configuration of simulated boundaries is applied, and the region is 
divided into a number of spatial cells with dimension such that the change in plasma 
properties across each cell is small. 

(2) The initial state of a plasma is specified, i.e., the initial posion and velocity 
of each particle are set up. 

(3) Time is advanced by discrete steps of magnitude At sufficiently small com- 
pared with the mean relaxation time. 

(4) The particle motion and the collision processes. are considered to be un- 
coupled over the time interval d t, and the former is calculated with the finite-size 
particle method. 

(5) Particles are grouped at every cell: all cells are numbered and particles are 
arranged in the addresses by the cell number. . 

(6) Pairs of particles suffering binary collisions are determined at random in a 
cell, because the finite separation of particles in a cell is neglected in this model. 
The pairs consist of three kinds; two ions, two electrons, and an ion and an electron. 

(7) The changes in the velocities of two particles due to a binary collision in 
the time interval fit are computed. 
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(8) The velocity of each particle is replaced by the new one given by the above 
calculation. 

(9) Steps (3~(8) are repeated successively. 

Grouping of Particles 

Now we explain a method to group particles at every cell (Step (5)). 

(i) All cells are numbered from 1 to J. 

(ii) The number of particles Ni in the cell j is counted: the total number is 
N = &, Ni . 

(iii) A particle, which is placed at the address II (1 < IZ < N) and is contained 
in the cell j, is marked with the cell number j, . 

(vi) Preparing N dummies, we replace the dummy n’ = m + n” (1 < n” < Ni) 
by the particle n, where N is the number of particles in cells from 1 to j, - 1. 

(v) After all dummies are replaced by particles, the particle n is replaced by 
the dummy n. Then particles are arranged in the addresses by the cell number. 

When the total number of particles is large, particles may be stored on disks, and 
a small fraction of the particles are in the fast memory. For such a case, a method to 
group particles is proposed as follows. We consider a two-dimensional (2-D) simula- 
tion in which the simulated region is divided into M x M cells. 

(i) The region is also divided into K subregions which consist of m x m cells, 
respectively (M2 = Kin2), and a cell in the subregion k is numbered as j = (k - 1) 
m2 +,j’ (1 <,j’ < 172”). 

(ii) Initially, all particles contained in the subregion k are in the fast memory: 
their number is about N/K. 

(iii) Motions of them are calculated by the finite-size particle method in the 
time interval dt, and some particles go out to other subregions: their number is 
about (1/2m) N/K, when L+ At is nearly equal to the cell length. 

(iv) The particles remaining in k are stored on the disk A, and the particles 
escaping from k are stored on the disk B. 

(v) These steps, (ii)-( are repeated until k is equal to K. At last, the number 
of particles stored on the disk B is about (K/2m) N/K. 

(vi) The particles on the disk B are arranged in the addresses by the subregion 
number, by the use of the method mentioned above. 

(vii) At the next time step, we can easily take out particles contained in the 
subregion k from the disks A and B to the fast memory. 

(vii’) When K/2m is larger than unity, we prepare the disks B,, , (1 < 1’ 5 
1 + K/2m) and take out particles from the disks A and B, (I N 1 + k/2m) to the fast 
memory. 
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Determination of pairs 

We grouped particles at every cell, and then we determine pairs of particles 
suffering binary collisions in a cell (Step (6)). We consider a situation such that Nr ions 
and Ne electrons exist in a cell at the time t. The ion density ni and the electron density 
ne are defined as yNi and YNe , respectively, where y = N,,/V, (NO is the particle 
number in a cloud and V,, is the cell volume) in a three-dimensional (3-D) simulation, 
or y = q/So (LQ is the line density of a cloud and SO is the cell area) in a 2-D simulation, 
or y = ns/L, (n, is the surface density of a cloud and LO is the cell length) in a one- 
dimensional (1-D) simulation, At first we interchange the addresses of the memories 
in which the positions and velocities are stored, at random, as shown in Fig. 1. 
Next we determine pairs of particles suffering binary collisions. 

Case Ia. Pairs of particles of the same species are determined in order from the 
top of the addresses, when the particle number is even, as shown in Fig. 2a. 

Case lb. If the particle number is odd, the first three particles are combined in 
three pairs (Fig. 2b). 

Ni Ni Ne Ne 
FIG. 1. Random replacement of the addresses of memories. 

.N t3N 
FIG. 2. Selection of pairs of the same species when N is even (a). (b) If  N is odd, first three 

particles are combined in three pairs. 
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.Ni Ne b Ni Ne 

FIG. 3. Selection of pairs of an ion and an electron. (a) Ni * Ne , (b) Ni > Ne . 

Case IIa. Pairs of an ion and an electron are chosen in order from the top of the 
addresses, when Ni is equal to Ne (Fig. 3a). 

Case IIb. If Ni is greater than Ne (Ni/Ne = i + r, where i is a positive integer 
and 0 < r < l), ions and electrons are divided into two groups; ions of (i + 1) rN, 
and electrons of rNe (First group), and ions of i(1 - r)Ne and electrons of (1 - r)Ne 
(Second group). Each electron of the first is selected i + 1 times for the pair to an 
ion of the first, and each electron of the second is chosen i times for the pair to an 
ion of the second (Fig. 3b). The same procedure is used when Ne is greater than Ni . 

Changes in Velocities 

Thus we can determine pairs of particles at random in a cell. Next we calculate the 
changes in the velocities due to binary collisions in the time interval At (Steps (7) and 
(8)). As an example of a pair, one particle of species 01 with mass m, and charge e, 
has a velocity vat at the time t, and the other of species /3 with mass ms and charge e, 
has a velocity vat. The relative velocity in the laboratory frame defined as 

ut=yt- t= 
a vB (urn , u, , UZY (1) 

is transformed into that in the frame of the relative velocity at the time t; 

( 

cos e cos 4 cos 0 sin 4 -sin e U, t 0 t 
-sin 4 cos 4 0 

HI (i 
u, = 0 9 (2) 

sin e cos + sin e sin # cos e u, u 

where the angles 0 and 4 are defined as shown in Fig. 4. As the result of a binary 
collision the magnitude of the relative velocity is unchanged but its direction is altered 
by the scattering angle 0 as illustrated in Fig. 5: 

(0, 0, 24)” + (24 sin 0 cos @, u sin 0 sin @, u cos O)t+dt, (3) 

where the angle @ takes on values from 0 to 27r. The postcollision relative velocity 
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FIG. 4. Coordinates in the laboratory frame and the relative velocity u at the time 1. 

FIG. 5. The change in the relative velocity. 

in the frame of the precollision relative velocity is transformed into that in the 
laboratory frame. It can be expressed in the form- 

t4z > u, 3 U,)t+At = (u, , u, , U,Y + (Au, , Au, , Au,), 

Au, =~(u,t/ult)24,t sin 0 cos @ - (ui/ult)u sin 0 sin Q, - uzt (1 - cos O), 

Au, =:(uyt/uLt)uzt sin 0 cos CD + (~,~/u,~)u sin 0 sin @ - 24: (1 - cos O), 

and 

Au, = -ult sin 0 cos @ - ~4,~ (1 - cos O), 

where u, = (uz2 + uu2)lj2. I f  u, = 0, Eqs. (4) are written in the form 

Au, = u sin 0 cos @, 

Au, = u sin 0 sin @, 

and 
Au, = --u(l - cos 0). 

(44 

(4b) 

(4c) 

(4d) 

(W 

(40 

W’) 
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By the use of these expressions we obtain the postcollision velocity of the particle 01 
and that of the particle p; 

and 
FpAt = v,’ + (rn,&?,) Au 

t+At 
v, = v, t - b&4 4 

(54 

(5b) 

where the reduced mass ma0 is defined by 

m n,e = m,md(m, + 4. (6) 

It is easily seen that both total momentum and total energy are conserved for a 
collision. In order to give the scattering angle in Eqs. (4), we introduce the relations 

sin 0 = 26/(1 + @) (74 
and 

1 - cos 0 = 262/(1 + 62). G’b) 

The variable 6 = tan(0/2) is chosen randomly with the Gaussian distribution. The 
mean is zero and the variance (S2) is given by 

(S2) = (e012eg2n~~/8?TE02m~gU3) At, (84 

where E,, is the permitivity of vacuum, n, is the lower density between n, and n4, 
and h denotes the Coulomb logarithm [I 21. In the case that the particle number NW 
is odd and the first three particles are combined in three pairs (Case Ib), the variance 
(S2) for the first three collisions is given by 

(S2) = +(em4naX/8q,2m&u3) At. (W 

In a simulation the time step is finite, and the value of (S2) proportional to At and 
to z.-~ becomes larger than unity occasionally. In this case, the scattering angle 0 is 
chosen randomly with a uniform distribution between 0 and 7~. 

Remarks 

These operations are performed over the all pairs of particles in the time interval At, 
and each particle suffers collisions with an ton (or some ions, in Case Ib and Case IIb) 
and with an electron (or some electrons). The random selection of the pair to a test 
particle from field particles through many time steps are approximately equivalent 
to an integration of the distribution function for field particles, in the case that the 
time interval is sufficiently small compared with the relaxation time [ 131. Accordingly, 
the collision term in the kinetic equation for the particles which suffer collisions 
described by this model is given in the Landau form: 
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111. itESULTS 

In order to check the model, we perform simulations of spatially uniform plasmas. 
The simulated region is not divided into spatial cells, and the finite-size particle 
method is not used here. 

Collision Frequencies [ 12, 141 

A test particle of species (Y with a velocity v, (a energy E, = m,v,“/2) is moved in a 
medium of field particles /3, which are distributed.according to a Maxwellian distribu- 
tion with temperature T, : 

fs = nB(ms/2~TB)3/2 exp(-msv2/2TO). 

We introduce the function p(x) and its derivative p’(x): 

p(x) = (2/n112) Ls e-Cf1/2 dt 

and 
p’(x) = (2/7r1/2)e-s x112. 

(10) 

(114 

(1 lb) 

We can obtain the mean rate-of-change of velocity and energy of the test particle in 
the form 

(dv,/dt) = -v:‘%, (124 

with 

(12b) 

and 

with 

vt a’A = 2 [$ P”(X) - P’(X)] 8d;;p&3,2 , 
0 w. a 

W4 

where vS and vt are called the “slowing-down frequency” and the “energy transfer 
frequency,” respectively, and x denotes mBc,/m,Ts . The rate of the increase of spread 
in the velocity component transverse to the original direction can be written in the form 

with 

(dvL2/dt) = v$%,~, (144 

al6 
vd = 2 [P(X) + P’(X) - gq * d;f~2?&3,2 , 

0 a OL 
(14b) 
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where vd is the “deflection frequency.” The “energy-exchange frequency” v, is also 
iniroduced as the rate of the increase of the energy spread: 

with 

VW 

The “total” collision frequencies vSa, vta, I@, and v,” are derived from the “partial” 

E/T 

20 

0 12345 
&/T 

\ 

“5 -3 - 

-4 - 

-5 - 
I 

I 

012345 

E/T 

FIG. 6. (a) The electron “slowing-down frequency” Y$ , (b) the electron “energy transfer fre- 
quency” v<, (c) the electron “deflection frequency” Vd', and (d) the electron “energy-exchange 
frequency” yye, as functions of energy of the test particle. An open circle represents the ensemble 
average of 6 x 10s particle - dt, and solid curves correspond to theoretical ones. 
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collision frequencies @, vr@, viiB, and v,UJB: 

va zzz c VG. 
B 

(16) 

We obtain the “total” collision frequencies in the simulation used the binary 
collision model. Simulation parameters are the following: ei = -ee = e, rni = 
1836me, ni = ne = it, Ti = Te = T, N = lo3 for each species, and v,t = 10-3, 
where the basic collision frequency v0 is defined as 

(17) 

Figures 6 show the electron collision frequencies vse, vte, I@, and v,& as functions of 

s 
\ 

.- v) 
5.3 

0.1 

i 

0 

0 

0.05 
t o 0 

&/T I/T 

I 
0 

0.1 - 
l 

FIG. 7. (a) The ion “slowing-down frequency” &, (b) the ion “deflection frequency” Vdi, and 
(c) the ion “energy-exchange frequency” v,t. 
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energy of the test particle, and Figs. 7 show the ion collision frequencies vsi, Vdi, and v,(. 
An open circle in the figures represents the ensemble average of 6 x lo3 particle . dt 
and solid curves correspond to Eqs. (12)-(16). The “deflection frequencies” and the 
“energy-exchange frequencies”observed in the simulation are different from theoretical 
ones by several percent. Considering that the distribution of lo3 particles deviates 
from a Maxwellian, these errors may be small enough. On the contrary, the errors 
in the “slowing-down frequencies” and the “energy transfer frequencies” are not 
small. One of the causes of these errors is that the ensemble average is obtained by 
summing up many plus values and many minus values, and their absolute values are 
of the same order. 

Relaxation Processes [ 12, 141 

We investigate macroscopic relaxation processes related to the “slowing-down 
frequency” and the “energy transfer frequency,” in which the errors are not small for 
the above observation. 

We consider that electrons are distributed initially according to a shifted Maxwellian 
distribution with mean velocity veO and temperature TeO , and that ion temperature is 
far smaller than (mi/m,)Te, . The time variation of the mean velocity v, is given 
approximately by 

dv,ldt = -vsve , (184 
with 

vs = P ($--)(JyZvo, 

where E denotes m&,$/2. Simulations are performed on conditions: E = T,,/2, 
E = Tee, and E = 2Te0. Other simulation parameters are the same as mentioned 
above. The solid curves in Figs. 8 are the results of simulations and dashed curves 
correspond to Eqs. (18). Figure 8a shows the statistical scatter in the results of three 
runs with the same parameter. 

Next we consider the case that ion temperature Ti, and electron temperature T,,, are 
different initially. The equilibration of temperatures is expressed by equations 

with 
d(Ti - Te)/dt = -2~eq(Ti - Te) (194 

The results of simulations are shown in Fig. 9a (mr/me = 4, Tio/Te, = Q), Fig. 9b 
(mtlme = 4, Tio/Teo = 2), and Fig. 9c (mi/me = 16, Tio/Te, = 4). 

The initial distribution with different longitudinal and transverse temperature 
(T,,, and T,,) is forced to an isotropic Maxwellian distribution. The rate of the relaxa- 
tion is approximated by 

d(T, - TJdt = -v(T,, - T,), (204 



216 TAKIZUKA AND ABE 
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OT” , I 
0.1 0.2 0.3 0.4 

IJot 

OIC I I I 
0.1 0.2 0.3 0.4 

vot 

FIG. 8. The time variation of the electron mean velocity V, . (a) l = *T,, , (b) E = Tea, (c) 
c = 2T,,. The solid curves are the results of simulations and the dashed curves correspond to 
theoretical ones. 
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0.1 0.2 0.3 0.4 
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FIG. 9. The equilibration of ion temperature TI and electron temperature Te. (a) &me =:a, 

T~~/T~,, = 4, (b) mtlme = 4, Tio/Te~ = 2, Cc) mdme = 16, TtolTeo = 4. 
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with 
v = (8/5(2’1~)~/~)q,, GObI 

where v,, is given by introducing the relation T = (T,, + 2TJ3, and the condition 
1 T,, - TL I Q T,, is assumed. Figure 10 shows the result of the simulation in case 
of T,,, = 2T,, . 

The deviation from the isotropic distribution caused by statistical scatter is balanced 
with the relaxation mechanism by collisions, and forms itself into a small and un- 
growing fluctuation, as shown in Fig. 11. 

FIG. 10. The relaxation of the difference between longitudinal temperature and transverse one 
G-ul = 27-d 

lJot 

FIG. 11. The deviation from the isotropic distribution, 

IV. SUMMARY AND DISCUSSION 

We have proposed a binary collision model for plasma simulations with particle 
codes. The major procedures of the model are that (1) a particle suffers binary collisions 
in the time interval with an ion and an electron which are chosen randomly in a 



COLLISION MODEL FOR PLASMA SIMULATION 219 

spatial cell, and that (2) the change in the relative velocity results from a Coulomb 
interaction. The model conserves both total momentum and total energy, and it 
describes a collision integral of the Landau form. 

The results of simulations of spatially uniform plasmas are in good agreement with 
the results obtained by theoretical analyses in which the Landau collision integral 
is used. However, the statistical scatter in the results is not avertible. This scatter is 
reduced by increasing the number of simulation particles. 

Computation time is about lo-* set/particle . dt on the FACOM 230-75. 
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